

Air quality State of the Environment monitoring programme

Annual data report, 2016

Tamsin Mitchell Environmental Science Department

For more information, contact the Greater Wellington Regional Council:

Wellington PO Box 11646 Masterton PO Box 41

T 04 384 5708 T 06 378 2484 F 04 385 6960 F 06 378 2146 www.gw.govt.nz www.gw.govt.nz

GW/ESCI-T-17/50

June 2017

www.gw.govt.nz info@gw.govt.nz

Report prepared by:	T Mitchell	Team Leader, Air Quality and Climate	T. Antchell
Report reviewed by:	P Fairbrother	Senior Science Coordinator	15.hrz
Report approved for release by:	L Butcher	Manager, Environmental Science	Shitch
			Date: 27/06/2017

DISCLAIMER

This report has been prepared by Environmental Science staff of Greater Wellington Regional Council (GWRC) and as such does not constitute Council policy.

In preparing this report, the authors have used the best currently available data and have exercised all reasonable skill and care in presenting and interpreting these data. Nevertheless, GWRC does not accept any liability, whether direct, indirect, or consequential, arising out of the provision of the data and associated information within this report. Furthermore, as GWRC endeavours to continuously improve data quality, amendments to data included in, or used in the preparation of, this report may occur without notice at any time.

GWRC requests that if excerpts or inferences are drawn from this report for further use, due care should be taken to ensure the appropriate context is preserved and is accurately reflected and referenced in subsequent written or verbal communications. Any use of the data and information enclosed in this report, for example, by inclusion in a subsequent report or media release, should be accompanied by an acknowledgement of the source.

The report may be cited as:

Mitchell T. 2017. Air Quality State of the Environment monitoring programme: Annual data report, 2016. Greater Wellington Regional Council, Publication No. GW/ESCI-T-17/50, Wellington.

Contents

1.	Introduction	1
2. 2.1 2.2 2.3 2.4 2.4.1	Background Monitoring objectives Monitoring network Monitoring variables Air quality assessment criteria and reporting National environmental standards and guidelines for air quality	2 2 2 3 4 4
3. 3.1 3.2	Results PM ₁₀ exceedances PM _{2.5} days above the WHO guideline	6 8 9
Ackno	owledgements	12
Refere	ences	13
Apper	ndix 1: Monitoring site metadata	14
Carbo Nitrogo Partico Data o	ndix 2: Air quality indicators, methods and reporting units in monoxide en dioxide ulate matter apture and reporting units apture methods	20 20 20 20 21 22
Apper	ndix 3: Wind roses	23

1. Introduction

This report summarises the key results from the Air Quality State of Environment (AQSoE) monitoring programme for the period 1 January to 31 December 2016 inclusive. The programme is based on continuous monitoring of air quality indicators and selected meteorological variables at six sites across the Wellington Region.

2. Background

Air quality has been monitored in the Wellington Region since 1998, when a series of pilot investigations were carried out. The first long-term site was established in Upper Hutt in 2000. Other sites have been progressively added to the monitoring network, which now comprises five long-term sites (Wellington central, Lower Hutt, Wainuiomata, Upper Hutt and Masterton West). Shorter-term monitoring sites are occasionally established to assist with targeted investigations relating to specific air quality issues. For example, a second monitoring site was set up in Masterton East in 2012 to assist with understanding how air quality varies across the Masterton urban area.

2.1 Monitoring objectives

The objectives of Greater Wellington Regional Council's (GWRC) AQSoE monitoring programme are to:

- 1. Determine compliance with national guidelines and standards designed to protect human health and the environment;
- 2. Detect spatial and temporal trends in air quality;
- 3. Contribute to our understanding of air quality processes and impacts in the Wellington Region; and
- 4. Provide information required to determine the effectiveness of regional plans and policies.

2.2 Monitoring network

The Wellington Region has eight airsheds located in valleys between steep hills or mountains (Figure 2.1); Kapiti Coast, Porirua Basin, Wellington City, Karori, Lower Hutt Valley, Wainuiomata, Upper Hutt Valley and Masterton.

Each airshed has its own distinct microclimate, meteorological conditions and air quality pressures. Apart from the Masterton Urban airshed, these airsheds were formally gazetted in 2005 in accordance with the National Environmental Standards for Air Quality (NES-AQ)¹ (Davy, 2005). The Masterton Urban airshed replaced the former Wairarapa Valley airshed as of 1 September 2014. Not all airsheds are currently monitored as the NES-AQ only requires airsheds to be monitored where air quality standards are likely to be breached.

A new Wellington central site was established in 2015 on the corner of Willis Street and SH1. A mobile monitoring station was deployed at this site from January to early September 2015. It was replaced in January 2016 by a permanent monitoring station.

Site metadata are presented in Appendix 1.

¹ Resource Management (National Environmental Standards for Air Quality) Regulations 2004

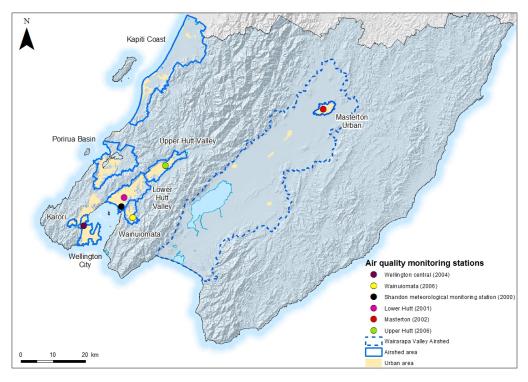


Figure 2.1: Airshed boundaries and location of GWRC air quality monitoring stations

2.3 Monitoring variables

The air quality indicators currently monitored in the Wellington Region are particulate matter (PM_{10} and $PM_{2.5}$), carbon monoxide (CO) and nitrogen oxides (NOx) which include nitrogen dioxide (NO_2) and nitric oxide (NO). These contaminants can have adverse human health impacts when concentrations in air are elevated. The air quality indicators measured at each site are shown in Table 2.1.

The two other pollutants that are regulated by national standards, sulphur dioxide (SO₂) and ozone (O₃), are not presently monitored in the Wellington Region. Meteorological conditions in the region are not conducive to the formation of ozone and there are no known significant point source emissions of sulphur dioxide.

Meteorological instruments for recording variables such as wind speed, wind direction and temperature are co-located at each monitoring site to assist with the interpretation of air quality data.

Further information on air quality indicators monitored and measurement methods are provided in Appendix 2.

Table 2.1: Air quality monitoring sites and indicators monitored

Site	Station	Airshed	Indicators monitored	Data available from
Wellington central	Willis Street (intersection of Willis Street and SH1)	Wellington City	PM ₁₀ , PM _{2.5} , CO, NOx	2015
Lower Hutt	Birch Lane (Phil Evans	Lower Hutt	PM ₁₀	2001
	Reserve)	Valley	CO, NOx	2001-2011
Wainuiomata	Wainuiomata Bowling	Wainuiomata	PM ₁₀	2006
	Club (Moohan Street)		PM _{2.5}	2012
Upper Hutt	Savage Park (Savage Crescent)	Upper Hutt Valley	PM ₁₀ , CO, NOx	2006
Masterton West	Wairarapa College	Masterton	PM ₁₀ , CO	2002
(permanent site)	(Pownall Street)	Urban	NOx	2003
			PM _{2.5}	2011
Masterton East	Herbert Street (Herbert	Masterton	PM ₁₀	2012
(non-permanent site)	Street)	Urban	PM _{2.5}	2013
Shandon	Shandon golf course (Gear Island, Petone)	Lower Hutt Valley	Meteorological parameters	2000

2.4 Air quality assessment criteria and reporting

2.4.1 National environmental standards and guidelines for air quality

National ambient air quality guidelines (NAAQG) were established by the Ministry for the Environment (MfE) in 1994 and revised in 2002 (Ministry for the Environment, 2002). Some of these guideline values were adopted as part of the NES-AQ in 2004. The NES-AQ specifies minimum requirements for outdoor air quality to provide a nationally consistent level of protection for human health and the environment.

There are no national standards for $PM_{2.5}$, although a value of $25\mu g/m^3$ (24-hour average) can be used for assessing monitoring results (Ministry for the Environment, 2002). In the absence of New Zealand standards, World Health Organization (WHO) guidelines are used for assessing the significance of $PM_{2.5}$ monitoring results (World Health Organization, 2006).

The relevant standards and guidelines for air quality indicators measured in the Wellington Region are shown in Table 2.2.

Table 2.2: Air quality standards and guidelines

Indicator	Standard or Guideline	Threshold concentration	Averaging period	Permissible exceedances per year
PM ₁₀	NES-AQ	50 μg/m³	24-hour	1
PM ₁₀	NAAQG	20 μg/m³	Annual	NA
PM _{2.5}	WHO Guideline	25 μg/m³	24-hour	3
PM _{2.5}	WHO Guideline	10 µg/m³	Annual	NA
Carbon monoxide	NES-AQ	10 mg/m ³	8-hour moving	6
Carbon monoxide	NAAQG	30 mg/m ³	1-hour	0
Nitrogen dioxide	NES-AQ	200 μg/m³	1-hour	9
Nitrogen dioxide	NAAQG	100 μg/m³	24-hour	0
Nitrogen dioxide	WHO Guideline	40 μg/m³	Annual	NA

3. Results

Summary statistics for air quality indicators measured during the 2016 calendar year are presented in Table 3.1. For sites where there is less than 75 percent data capture for the calendar year no summary statistics are reported apart from the maxima.

PM₁₀ was the only pollutant that failed to meet the NES-AQ, and only at the Masterton East site. During winter there were quite a few days in Masterton and Wainuiomata where levels of PM_{2.5} failed to meet the World Health Organization (WHO) guideline. These exceedances are shown in Table 3.1 in red

Masterton East had a greater number PM_{10} exceedances and days above the $PM_{2.5}$ guideline than Masterton West. Poorer air quality is found at Masterton East because on cold and cloudless nights cold air slowly drains across Masterton from the west carrying fine particles from home fires towards the lower lying area on the east side leading to a build-up of air pollution.

Wind roses showing summaries of wind speeds and wind direction observations at selected sites are presented in Appendix 3.

Table 3.1: 2016 air quality indicator summary statistics

	Wellington central	Lower Hutt	Upper Hutt	Masterton West	Masterton East	Wainuiomata
PM ₁₀				I	L	
24-hour average	ug/m³					
Mean (annual)	11.3	11.2	10.5	13.9	15.1	10.7
Maximum	26	28	27	57	65	32
Median	10.7	10.4	9.7	11.0	10.6	9.8
Std deviation	4.6	4.4	4.7	8.9	12.1	5.2
25th percentile	8.1	8.1	7.0	8.0	7.6	7.0
75 th percentile	13.6	13.1	13.1	16.7	17.3	12.8
95 th percentile	19.1	20.3	19.8	33.5	41.8	20.5
99th percentile	24.4	23.6	23.4	42.6	57.2	28.9
No. > 50	0	0	0	1	10	0
Valid data (24hr)	86%	99.7%	99%	96%	93%	99%
Data capture	89.6%	99.4%	99.3%	97.1%	95.3%	99.2%
PM _{2.5}	•	1	•	•	•	1
24-hour average	ug/m³					
Mean (annual)	5.5			8.8	10.5	6.1
Maximum	13			49	58	36
Median	5.2			5.4	6.0	4.8
Std deviation	2.4			8.1	10.7	5.0
25 th percentile	3.8			3.9	4.2	3.4
75 th percentile	7.1			10.3	12.1	6.6
95 th percentile	9.5			26.2	35.2	14.7

	Wellington central	Lower Hutt	Upper Hutt	Masterton West	Masterton East	Wainuiomata
99th percentile	12.0			37.0	50.1	29.2
No. > 25	0			19	35	10
Valid data (24hr)	89%			98%	99%	98%
Data capture	86.2%			97.9%	99.6%	98.6%
Carbon monoxide 8-hour moving ave						
Mean (annual)	0.22		0.17	0.29		
Maximum	0.98		1.29	2.45		
Median	0.19		0.11	0.18		
Std deviation	0.12		0.17	0.30		
25 th percentile	0.13		0.07	0.12		
75 th percentile	0.26		0.18	0.32		
95th percentile	0.47		0.55	0.96		
99th percentile	0.66		0.85	1.50		
No. > 10	0		0	0		
Carbon monoxide 1-hour average m	ī		1			
Mean (annual)	0.22		0.17	0.29		
Maximum	1.78		1.82	4.49		
Median	0.18		0.10	0.16		
Std deviation	0.16		0.20	0.37		
25 th percentile	0.11		0.07	0.11		
75 th percentile	0.26		0.17	0.28		
95 th percentile	0.50		0.59	1.04		
99th percentile	0.89		1.05	1.93		
No. > 30	0		0	0		
Data capture	98.7%		88.6%	99.1%		
Nitrogen dioxide 1-hour average μο	g/m³					
Mean (annual)	14.0		5.4	6.7		
Maximum	61.5		44.4	50.8		
Median	12.4		2.8	4.2		
Std deviation	9.9		6.4	6.7		
25 th percentile	6.4		1.4	2.5		
75 th percentile	19.2		6.8	8.1		
95 th percentile	33.9		19.8	21.1		
99th percentile	45.0		30.1	33.8		
No. > 200	0		0	0		
Data capture	98.1%		91.8%	96.4%		

	Wellington central	Lower Hutt	Upper Hutt	Masterton West	Masterton East	Wainuiomata
Nitrogen dioxide	<u> </u>			<u> </u>	<u> </u>	•
24-hour average µ	ıg/m³					
Mean (annual)	14.0		5.4	6.7		
Maximum	32.4		18.8	20.6		
Median	12.8		4.2	5.6		
Std deviation	6.2		4.1	4.2		
25th percentile	9.6		2.0	3.6		
75th percentile	17.9		7.8	9.3		
95th percentile	26.9		13.5	15.7		
99th percentile	29.9		16.1	18.1		
No. > 100	0		0	0		

3.1 PM₁₀ exceedances

The NES-AQ for PM_{10} allows an airshed to exceed the threshold concentration of 50 $\mu g/m^3$ (24-hour average) on one day per 12 month period – known as a 'permissible exceedance'. Airsheds that average more than one exceedance per year are designated as polluted by the NES-AQ and new industries that seek resource consent to discharge PM_{10} into these airsheds may face restrictions.

The Masterton Urban airshed is the only one in the region that is designated as polluted (due to poor air quality in winter as a result of emissions from home fires). Table 3.2 shows the exceedance dates and concentrations measured at the two monitoring sites in Masterton. A total of 10 exceedance days meant there were nine breaches of the NES-AQ in the airshed.

A temporary monitoring site in Carterton during winter 2016 measured two exceedances of the PM₁₀ NES-AQ on 4 and 5 June (Queen's Birthday weekend). During this period (between 3 and 6 June) wind speeds measured at the monitoring site were low (less than 1 m/s), daily average temperatures were below 6°C and overnight temperature minima were below zero degrees. From 1 to 8 June there was a strong high pressure system (anticyclone) situated over central New Zealand. This anticyclone was slow moving and persisted for eight consecutive days bringing very stable atmospheric conditions unfavorable for dispersion of emissions from home heating (Mitchell, 2016).

Table 3.2: PM₁₀ NES-AQ exceedance days recorded in 2016

Date	Masterton (East) 24-hour average (µg/m³)	Masterton (West) 24-hour average (µg/m³)	Carterton 24-hour average (µg/m³)
3 June	53		
4 June	65		52
5 June	58		54
6 June	52		
8 June	56		
14 June	53		
17 June	53		
3 July	59	57	
7 July	61		
22 July	57		
TOTAL EXCEEDANCES	10	1	2
Total breaches	9	0	1

3.2 PM_{2.5} days above the WHO guideline

The WHO guideline value for $PM_{2.5}$ is 25 $\mu g/m^3$ expressed as a 24-hour average. Table 3.3 shows the dates when the concentration of $PM_{2.5}$ exceeded the 24-hour WHO guideline value. The WHO guideline allows three days per year to exceed the 24-hour guideline limit.

Over the winter period Masterton fails to meet the daily WHO guideline for $PM_{2.5}$ more frequently than the daily PM_{10} standard. Wood smoke mainly contains the smaller $PM_{2.5}$ sized particles so most of the PM_{10} measured on still winter nights is actually $PM_{2.5}$ particles, meaning it is easier to exceed the $PM_{2.5}$ daily limit of 25 μ g/m³ than the PM_{10} limit of 50 μ g/m³. $PM_{2.5}$ is a better indicator of health impacts across the population than PM_{10} because smaller particles are more damaging to health (World Health Organization, 2006).

Table 3.3: $PM_{2.5}$ days above WHO 24-hour guideline value recorded in 2016

	Masterton (East)	Masterton (West)	Carterton	Wainuiomata
Date	24-hour average (µg/m³)	24-hour average (µg/m³)	24-hour average (µg/m³)	24-hour average (µg/m³)
25 April	32			
2 June	45	36	32	27
3 June	47		39	30
4 June	58	38	49	31
5 June	52	29	54	26
6 June	49	32	28	
7 June	42		34	36
8 June	49	32	47	31
9 June	30		33	27
13 June			26	
14 June	43	36		
15 June	31			
16 June	31	26		
17 June	45	38	39	
21 June	26			
25 June	29			
28 June	27			
2 July	38	30	38	
3 July	53	49		
4 July	27			
6 July	35	27		
7 July	53			
10 July	41	30	26	
11July				26
12 July	30			26
16 July			30	29
21 July	30			
22 July	47	39	31	
26 July	36	30	26	
1 August	27	29		
2 August	No data available	32		
8 August	32	29	28	
10 August	39	31		
15 August	34			

Date	Masterton (East) 24-hour average (µg/m³)	Masterton (West) 24-hour average (µg/m³)	Carterton 24-hour average (µg/m³)	Wainuiomata 24-hour average (µg/m³)
16 August	33			
17 August	36		31	
18 August	32			
29 August	42	35		
12 September	28			
TOTAL DAYS ABOVE GUIDELINE	35	19	17	10
Total breaches	32	16	14	7

Acknowledgements

The work of Darren Li in operating and maintaining monitoring equipment and stations is gratefully acknowledged

References

Carslaw DC and Ropkins K. 2015. *Openair: Open-source tools for the analysis of air pollution data*. R package version 1.5. http://CRAN.R-project.org/package=openair

Davy P. 2005. *Nominated airsheds for the Wellington Region*. Greater Wellington Regional Council, Publication No. GW/RINV-T-05/113, Wellington.

Ministry for the Environment. 2002. *Ambient air quality guidelines – 2002 update*. Air Quality Report No. 32, Wellington.

Ministry for the Environment. 2009. *Good-practice guide for air quality monitoring and data management 2009*. Report No. ME 933. Ministry for the Environment, Wellington.

Mitchell T. 2016. *Carterton winter air quality: 2010 to 2016*. Greater Wellington Regional Council, Publication No. GW/ESCI-T-16/96, Wellington.

R Core Team. 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

World Health Organization. 2006. WHO air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide – global update 2005. Retrieved from http://www.who.int/phe/health topics/outdoorair aqg/en/

Appendix 1: Monitoring site metadata

Site Name Lower Hutt
Station Birch Lane
Hilltop site ID 108

Location

Address Phil Evans Reserve, 46 Oxford Tce, Waterloo, Lower Hutt

 Map reference
 Easting
 Northing

 NZTM
 1761032
 5435863

 NZMG
 2671054
 5997577

 WGS84
 Lat: -41.212603
 Long: 174.920871

Site details

Site type Residential / Commerical

Airshed Lower Hutt Valley

Altitude 0 m

Nearest Road 100 m

Nearest Tree 10 m

Site Classification (MfE, 2009) Residential (AS/NZ 3580.1.1:2007) Neighbourhood

Parameters measured			
	Instrument	Start date	End date
$PM_{10} (\mu g/m^3)$	FH62	14/12/2010	
$PM_{10} (\mu g/m^3)$	TEOM	5/04/2001	13/12/2011
Carbon monoxide (ppm)	M300E	25/10/2001	11/01/2012
Nitrogen oxides (NO, NO ₂ , NOx) (ppb)	M200E	13/08/2001	11/01/2012
	RH, Temp, WS, WD, global solar radiation, rain, Barometric		
Meteorological	Pressure	25/10/2001	
Mast height	10m		
Internal temperature	25°C		

Data acquisition
Sampling rate
AQ - 10 seconds, Met - 3 seconds

Logger average 10-minute
Logger iQuest DS-4483

 Logger
 iQuest DS-4483
 5/04/2001
 2/06/2015

 Logger
 Campbell CR1000
 2/06/2015

 Telemetry
 GPRS

 Modem
 iQuest ICE3

 ICP
 0001395574UN55D

Monitoring notes

Passive NO₂ in triplicate measured by NZTA

Start date

End date

1/03/2010

Site Name	Masterton East	
Station	Chanel College	
Hilltop site ID	3579	
Location		
Address	Herbert Street	Masterton
Map reference	Easting	Northing
NZTM	1823279.81	5462375.21
NZMG	2733294.01	6024095.93
WGS84	Lat: -40.959262	Long: 175.653116
Site details		
Site type	Type: Residential	Scale: Neighbourhood
Airshed	Masterton Urban	
Altitude	105m	7
Nearest Road	75m	
Nearest Tree	15m	•
Site Classification (MfE, 2009)	Residential (peak)	

Parameters measured			
	Instrument	Start date	End date
$PM_{10} (\mu g/m^3)$	5014i	17/05/2012	
$PM_{2.5} (\mu g/m^3)$	5014i + VSCC	2/12/2013	
Meteorological	RH, Temp, BP, WS, WD	11/05/2012	
Mast height	6m		
Internal temperature	25°C		
Data acquisition			
Sampling rate	AQ - 10 seconds, Met - 5 seconds		
Logger average	10-minute		
Logger	iQuest DS-4483	11/05/2012	17/11/2015
Logger	Campbell CR1000	17/11/2015	
Telemetry	GPRS		
Modem	iQuest ICE3		
ICP			
Monitoring notes			
		Start date	End date
Fine and coarse PM measured by GNS Science	e GENT	1/07/2010	1/09/2010

Site Name	Masterton West		
Station Hilltop site ID	Wairarapa College 2637		
Location Address Map reference NZTM NZMG WGS84 Site details Site type Airshed Altitude Nearest Road Nearest Tree Site Classification (MfE, 2009)	83 Pownall Street Easting 1822756 2732764 Lat: -40.952364 Type: Residential Masterton Urban 161m 124m 5m Residential	Masterton Northing 5463164 5463158 Long: 175.646546 Scale: Neighbourhood	
(AS/NZ 3580.1.1:2007)	Neighbourhood		
Parameters measured			End date
PM ₁₀ (μg/m³) PM _{2.5} (μg/m³) Carbon monoxide (ppm) Nitrogen oxides (NO, NO ₂ , NOx) (ppb) Meteorological Mast height Internal temperature	Instrument 5014i FH62 (inlet 40°C) 5014i TEOM High Volume Sampler 5014i SHARP 5030 M300E M200E Temp, WS, WD, RH, BP, soil moisture, soil temperature, rainfall, net solar radiation 15m 25°C	Start date 17/12/2015 18/06/2007 25/05/2012 9/10/2002 17/04/2003 11/12/2015 28/01/2011 9/10/2002 1/01/2003	16/12/2015 2/12/2013 1/01/2011 30/03/2005 10/12/2015
Data acquisition	AO 10 seconds Mat 5 assessed		
Sampling rate Logger average Logger Logger Telemetry Modem	AQ -10 seconds, Met-5 seconds 10-minute iQuest DS-4483 Campbell CR1000 GPRS iQuest ICE3	9/10/2002 4/02/2014	3/02/2014
Monitoring notes			

Start date

27/06/2002

End date

3/11/2004

Fine and coarse PM measured by GNS Science GENT

Site Name Upper Hutt

Station Savage Park Hilltop site ID 2468

Location

Address 15 Savage Cres, Upper Hutt

 Map reference
 Easting
 Northing

 NZTM
 1773804
 5445684

 NZMG
 2683825
 6007400

WGS84 Lat: -41.121549 Long: 175.070348

Site details

Site type Type: Residential

Airshed Upper Hutt Valley

Altitude 43 m
Nearest Road 69 m
Nearest Tree 11 m
Site Classification (MfE, 2009) Residential

End date

Parameters measured

 Instrument
 Start date

 PM_{10} (μg/m³)
 FH62
 8/11/2005

 Carbon monoxide (ppm)
 M300E
 30/09/2005

 Nitrogen oxides (NO, NO2, NOx) (ppb)
 M200E
 19/09/2005

RH, Air Temp, Soil Temp, WS, WD, solar radiation, rain,

Meteorological Barometric Pressure 14/09/2005

 $\begin{array}{ll} \text{Mast height} & 10 \text{m} \\ \text{Internal temperature} & 25 ^{\circ} \text{C} \end{array}$

Data acquisition

Sampling rate AQ - 10 seconds, Met - 5 seconds

Logger average 10-minute
Logger iQuest DS-4483

Logger iQuest DS-4483 14/09/2005 27/06/2013

Campbell CR1000 28/06/2013

Telemetry GPRS
Modem iQuest ICE3

ICP

Monitoring notes

Passive NO_2 in triplicate measured by NZTA Start date End date 1/03/2010 1/11/2012

Site Name	Wainuiomata			
Station	Wainuiomata Bowling Cl	Wainuiomata Bowling Club		
Hilltop site ID	2579			
Location				
Address	Moohan Street	Wainuiomata		
Map reference	Easting	Northing		
NZTM	1763651	5429685		
NZMG	2673674	5991399		
WGS84	Lat: -41.267695	Long: 174.953745		
Site details				
Site type	Type: Residential	Scale: Neighbourhood		
Airshed	Wainuiomata	•		
Altitude	80m			
Nearest Road	20m	7		
Nearest Tree	10m			
Site Classification (MfE, 2009)	Residential	Salar		
Parameters measured				
	Instrument	Start date End dat		
PM ₁₀ (ug/m ³)	FH62 (inlet 40°C)	30/06/2006		

	-		
Parameters measured			
	Instrument	Start date	End date
$PM_{10} (\mu g/m^3)$	FH62 (inlet 40°C)	30/06/2006	
$PM_{2.5} (\mu g/m^3)$	FH62 + VSCC (inlet 40°C)	1/05/2012	
$PM_{10} (\mu g/m^3)$	High Volume Sampler	20/09/2000	6/10/2007
	RH, Aiir Temp, Soil Temp, WS,		
	WD, BP, solar radiation, soil		
Meteorological	moisture	1/01/2005	
Mast height	10m		
Internal temperature	25°C		
Data acquisition			
Sampling rate	AQ - 10 seconds, Met - 3 seconds		
Logger average	10-minute		
Logger - Met	iQuest DS-4483	20/09/2000	23/06/2015
Logger - Met	Campbell CR1000	23/06/2015	
Logger - AQ	iQuest DS-4483	30/06/2006	6/07/2015
Logger - AQ	Campbell CR1000	6/07/2015	
Telemetry	GPRS		
Modem	iQuest ICE3		
ICP	0001454109UN341		
Monitoring notes			
		Start date	End date
Fine and coarse PM measured by GNS Science	ce GENT	1/09/2006	25/09/2008
Inorganic arsenic	High Volume sampler PM ₁₀	25/10/2011	31/10/2013

Site Name Wellington central

Station Willis Street AQ

Hilltop site ID 479

Location

Address Intersection Wellington urban motorway and Willis Street, Te Aro, Wellington

 Map reference
 Easting
 Northing

 NZTM
 1748360
 5427132

 NZMG
 2658382
 5988844

WGS84 Lat: -41.293625 Long: 174.771919

Site details

Site type Peak transport
Airshed Wellington City

Altitude 24m
Nearest Road 8m
Nearest Tree 30m
Site classification (MfE, 2009) Traffic

(AS/NZ 3580.1.1:2007) Peak transport

20/01/2015

3/12/2015

Mobile station

Fixed station

	Wiodine Station	, pica station	
Parameters measured			
	Instrument	Start date	End date
PM ₁₀ (μg/m³)	FH62 (mobile station)	20/01/201 5	14/09/2015
PM ₁₀ (μg/m³)	SHARP 5030 (fixed station)	8/01/2016	
PM _{2.5} (μg/m³)	SHARP 5030 (fixed station)	8/01/2016	
Carbon monoxide (ppm)	M300E (mobile station)	20/01/201 5	14/09/201 5
Nitrogen oxides (NO, NO ₂ , NO _x) (ppb)	M200E (mobile station)	20/01/201 5	14/09/201 5
Carbon monoxide (ppm)	M300E (fixed station)	17/12/201 5	
Nitrogen oxides (NO, NO ₂ , NOx) (ppb)	M200E (fixed station)	16/12/201 5	
Black carbon (ng/m3)	AE33 (fixed station)	5/10/2016	
Meteorological	RH (%), Temperature (°C), Wind speed		
	(m/s), Wind direction (degrees),		
	Barometric Pressure	5/01/2016	
Mast height	4m		
	•		

Internal temperature 25°C

Data acquisition

Sampling rate AQ -10 seconds, Met - 3 seconds

Logger average10-minuteLoggeriQuest DS-4483LoggerCampbell CR1000

Telemetry GPRS
Modem iQuest ICE3
ICP 0001441727UN448

Monitoring notes

Passive NO₂ in triplicate measured by NZTA 1/01/2015
Black carbon measured by NIWA 10/03/2015

14/09/2015

Appendix 2: Air quality indicators, methods and reporting units

Carbon monoxide

Carbon monoxide (CO) is a colourless and odourless gas produced by the incomplete combustion of carbon-containing fuels such as petrol and diesel used in motor vehicles, or wood and coal used for domestic heating or in industrial boilers. Motor vehicles are the main source of carbon monoxide in urban areas.

When inhaled, carbon monoxide reduces the oxygen carrying capacity of the blood and, depending on its concentration, causes a range of adverse health effects.

Nitrogen dioxide

Nitrogen dioxide (NO₂) arises from combustion processes, with vehicle emissions being the main source in urban areas. Vehicle exhausts contain a mixture of nitrogen dioxide and nitric oxide (NO), collectively known as oxides of nitrogen (NOx). Most of the NOx discharged from vehicle exhausts is in the form of nitric oxide which is subsequently converted to nitrogen dioxide by oxidation.

Nitrogen dioxide appears as a brown gas in the atmosphere and can be seen as a haze over some cities during periods of calm weather and heavy traffic congestion. As well as contributing to poor visibility, nitrogen dioxide has adverse health effects such as lung inflammation and eye, nose and throat irritation.

Particulate matter

Particulate matter (PM) is a mixture of airborne solid particles and liquid droplets. Particulate matter concentrations are typically classified by particle size. PM_{10} includes all particles smaller than 10 microns (μ m) in diameter and $PM_{2.5}$ includes all particles smaller than 2.5 μ m in diameter.

PM arises from human activities and natural sources. Sources of PM in the Wellington Region include:

- Domestic solid fuel heating (eg, wood burners)
- Motor vehicles, particularly diesel vehicles
- Industrial combustion processes
- Quarrying activities
- Natural sources such as sea salt and wind-blown soil particles.

Domestic fires and vehicles produce very fine particles less than 2.5 microns in diameter ($PM_{2.5}$). Road dust and natural sources (such as sea salt and soil) produce particles that are typically larger than 2.5 microns and are commonly described as the 'coarse' fraction of PM_{10} .

Epidemiological studies show adverse health effects from both short-term and long-term exposure to PM_{10} . However, a threshold below which there are no observed adverse effects has not been reliably established to date (World Health Organization, 2006). The adverse health effects associated with exposure to PM_{10} range from increases in the number of restricted activity days to increases in hospital admissions and premature deaths for people with existing lung and heart disease. The fine component of PM_{10} (ie, $PM_{2.5}$) is more strongly associated with harmful health impacts because the smaller the particle the deeper it can penetrate into the lungs.

Data capture and reporting

All pollutants are measured continuously with instruments that are connected by digital interface to data loggers. Ambient air is sampled at 10 to 20 second intervals (depending on the number of instruments at a site) and these measurements are reported as 10-minute averages at New Zealand Standard Time (NZST). These 10-minute averages are then aggregated to hourly averages where there is at least 75% data capture (ie, at least five 10-minute averages must be present for a 1-hour average to be considered valid and included in the data set). Hourly averages apply to the preceding hour (eg, a 1-hour average at 17:00 refers to data collected between 16:00 and 16:59).

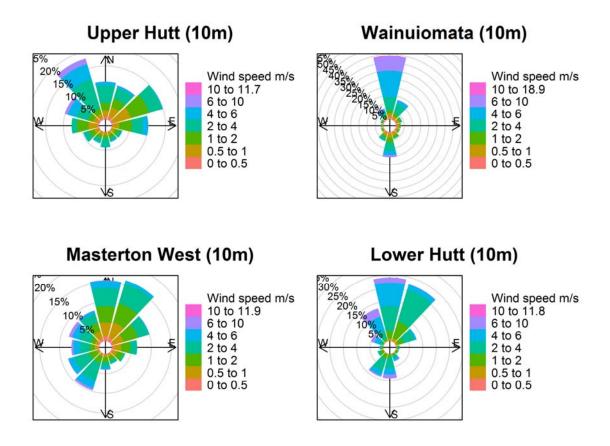
 PM_{10} 24-hour averages are calculated from 1-hour averages between midnight to midnight (00:00 to 23:59) and require at least 18 hours of data for each 24-hour period to be included in the data set. PM_{10} values are rounded up to the nearest whole number for reporting purposes in accordance with MfE (Ministry for the Environment, 2009) recommendations. An exceedance of the NES-AQ is therefore 51 μ g/m³ or higher.

For comparison with the NES-AQ for carbon monoxide, 8-hour moving means are calculated on the hour for the preceding 8-hour period using 1-hour averages. At least 6 hours (ie, at least 75% data capture) must be present for an 8-hour mean to be considered valid and included in the data set. Carbon monoxide 8-hour moving means and nitrogen dioxide 1-hour averages are rounded to one decimal place for reporting purposes in accordance with MfE (Ministry for the Environment, 2009) recommendations.

Measurement methods

Variable	Instrument	Method	Units
PM ₁₀	Thermo Andersen series FH62 C14 beta attenuation monitor and Thermo Scientific 5014i beta attenuation monitor	Automated method equivalent to the United States Code of Federal Regulations (CFR) ² EQPM-1102-150 Method 9.11: Determination of suspended particulate matter – PM ₁₀ beta attenuation monitors in accordance with AS/NZS 3580.9.11:2008	μg/m³
PM _{2.5}	Thermo Scientific 5030 SHARP monitor + Very Sharp Cut Cyclone particle size separator	EQMP-0609-184 ³ Method 9.12: Determination of suspended particulate matter – PM _{2.5} beta attenuation monitors in accordance with AS/NZS 3580.9.12:2013	μg/m³
PM _{2.5}	Thermo Andersen series FH62 C14 beta attenuation monitor + Very Sharp Cut Cyclone particle size separator.	Does not have USEPA equivalency	µg/m³
PM _{2.5}	Thermo Andersen 5014i + Very Sharp Cut Cyclone particle size separator.	EQPM-0609-183 Method 9.12: Determination of suspended particulate matter – PM _{2.5} beta attenuation monitors in accordance with AS/NZS 3580.9.12:2013	µg/m³
Carbon monoxide	API 300 series analysers	Gas Filter Correlation Infrared in accordance with AS 3580.7.1:2011 Method 7.1: Determination of carbon monoxide – Direct-reading instrumental method	Parts per million (ppm) converted to mg/m³ by multiplying by 1.25 (0°C)
Nitrogen dioxide	API 200 series analysers	Chemiluminescence in accordance with AS 3580.5.1:2011 Method 5.1: Determination of oxides of nitrogen – Direct-reading instrumental method	Parts per billion (ppb) and is converted to µg/m³ by multiplying by 2.05 (0°C)

² Title 40 – Protection of the Environment, Volume 2, Part 50, Appendix J: Reference Method for the Determination of Particulate Matter as PM₁₀ in


the Atmosphere.

3 Title 40 – Protection of the Environment, Volume 2, Part 50, Appendix L: Reference Method for the Determination of Fine Particulate Matter as PM_{2.5} in the Atmosphere.

Appendix 3: Wind roses

The below wind roses were created using R statistical software (R Core Team, 2015) and the 'openair' package (Carslaw and Ropkins, 2015). They show the proportion (percentage) of time that the wind is coming from a particular angle (30° increments) and wind speed range (shown on the right-hand scale in metres per second). The wedge points towards the direction the wind is blowing from.

Figure A3.1: Wind roses showing wind speed (m/s) and direction recorded at air quality monitoring stations during 2016 (mast height is shown in brackets)

