

То:	Tim Blackman	From:	David Cameron
	Wellington Water Ltd		Stantec Wellington
Project/File:	310003253	Date:	3 March 2025

Reference: Allocating TAS and CWO to Stormwater/WNO sub-catchments

This memo considers the application of target attribute states (TAS) and coastal water objectives (CWO) from Proposed Change 1 to the Natural Resourced Plan (PC1) in the management of local authority stormwater and wastewater networks.

<u>Rivers</u>

Boundary differences and assignment of TAS

Wellington Water Ltd (WWL) defined 35 hydrological sub-catchments within the boundaries of Wellington, Porirua, Hutt, and Upper Hutt cities during development of the global stormwater discharge consent application, the stormwater management strategy (SMS), and the wastewater network wet weather overflow (WNO) consent application. For the purposes of this memo the 35 sub-catchments are referred to as the 'sub-catchments'.

The sub-catchment boundaries are similar but not identical to GWRC's partial freshwater management units (part-FMU's) defined in PC1. The difference is because part-FMUs group similar land-use types and do not necessarily follow hydrological catchment boundaries.

PC1 assigns a river monitoring site to each part-FMU. It also sets targets for a range of water quality, habitat, and ecological attributes, known collectively as Target Attribute States (TAS). Where a TAS is not met, PC1 requires that the state of that attribute is improved in all rivers and river reaches in the part-FMU so that the TAS is met by 2040¹.

To give effect to PC1 in WWL's global stormwater consent and wastewater network overflow consent, where the part-FMU boundaries do not fully align with sub-catchment boundaries, we have assigned a TAS to each sub-catchment.

Attachment A to this memo overlays part-FMU and sub-catchment boundaries. It is evident that there is close to 100% alignment in some cases while other sub-catchments have poor alignment, and many don't include a TAS site. Our approach to ensuring that every sub-catchment has a matched TAS site is to identify the part-FMU with the greatest proportion of area in each sub-catchment, and to assign the corresponding TAS site to that sub-catchment.

Attachment B shows the output of this process, aligning Whaitua, Coastal Management Unit (CMU), Part-FMU, best matched sub-catchment, and the corresponding TAS sites.

¹ See for example Objective WH.O9 of Plan Change 1

Gap between current state and target state

Attachment C expands the analysis by including the current state for copper, zinc and *E. coli*, the target state for those attributes, and the estimated reduction in contaminant load required to achieve each TAS².

Copper and zinc are key contaminants of stormwater. Their concentrations are almost always elevated in urban stormwater because their sources: brake wear and vehicle wear (copper), tyres, and galvanized iron roofing (zinc), are ubiquitous in urban areas. Consequently, their concentrations can be high in urban streams and in the sediments of sheltered marine habitats relative to their TAS or CWO.

E. coli in urban streams and enterococci in coastal waters are indicators of faecal contamination which, in urban areas, is sourced mostly from wastewater network faults, leaks and overflows (other sources in urban areas include waterfowl, gulls, domestic pets, possums, rats, etc.). *E. coli* concentrations are consistently and significantly elevated in urban streams relative to the TAS.

Attachment D indicates that a large reduction in copper loads (50 to 99%) is required in 10 of the 37 sub-catchments including Kaiwharawhara, Duck Creek, Taupo, Waiwhetū, Stokes Valley, Hulls and other Te Awa Kairangi urban catchments. Smaller reductions (4%) are required in an additional 9 sub-catchments including the Ngauranga, Karori, and Wellington urban catchments.

A large reduction in zinc loads (40 to 76%) is required in the same 10 sub-catchments as listed for copper. Smaller zinc reductions (8%) are required in an additional 12 sub-catchments including Black Creek, Porirua, and the Wellington urban catchments (Attachment E).

A large or very large *E. coli* reduction (17 to 99%) is required across 30 of the 37 sub-catchments including all urban catchments in the Hutt Valley, Porirua and Wellington. The only sub-catchments where reductions are not required are the predominately forested catchments of Akatarawa, Whakatikei, Pakuratahi, Te Awa Kairangi, Korokoro, Speedys, Dry Creek, Wainuiomata and Orongorongo. In these cases, the extent of the wastewater network is minimal to non-existent (Attachment F).

The challenge

Most copper and zinc in urban streams have been transported there by stormwater runoff from roofs, roads, carparks, and gutters in urban catchments. Indicative actions to reduce discharge loads include the treatment of impervious surface runoff via a range of facilities including proprietary treatment devices, swales, wetlands, and rain gardens, as well as the replacement of old zinc roofs, and offsetting of new developments. Reduced vehicle volumes and the uptake of cleaner transport options might also contribute to reductions in contaminant loads. However, there are serious practical challenges associated with implementing these improvements due largely to the sheer scale of the project. We understand that the resourcing and financial implications will be considered in an economic assessment of PC1 related wastewater and stormwater network upgrades being led by GWRC.

² The approach used to estimate load reductions required to achieve relevant TAS's in Whaitua Te Whanganui-a-Tara is described by Dr Michael Greer in evidence prepared for Greater Wellington's Plan Change 1 to the NRP. Required load reduction estimates were determined from a daily timestep water quality model by manipulating the daily contaminant loads to achieve TAS's. Further estimates of load reductions were obtained from NIWA's Metals Urban Streams Tool. As load estimates varied depending on the method applied, Greer recommended that multiple methods be used for this purpose. For TAS sites in Te Awarua o Porirua, concentration/load relationships from the eWater Source model were used to calculate the load reduction that corresponds to the TAS being met...

Most faecal contamination in urban streams is sourced from wastewater network faults, leaks and overflows. Indicative actions for reducing *E. coli* loads include fixing cross connections, replacing grade 4 and 5 (poor condition) pipes, and reducing wet weather overflows from wastewater networks. As noted above for copper and zinc, the scale of the works required to achieve the *E. coli* TAS is very large and, we understand, will also be included in the GWRC economic analysis.

<u>Lakes</u>

PC1 defines freshwater management units for lakes Kohangapiripiri and Kohangatera however there is no local authority stormwater or wastewater infrastructure within these catchments and consequently they are not discussed further in this memo.

<u>Coastal</u>

PC1 defines seven coastal management units (CMU's), these being Onepoto Arm, Pauatahanui Inlet, Open Coast (Porirua), Te Whanganui-a-Tara harbour and estuaries, Makara Estuary, Wainuiomata Estuary, and Wai Tai. PC1 also includes a series of 'Coastal Water Objectives' (CWO) and requires that the CWO's are met by 2040. Attachment B aligns the CMU's with their contributing subcatchments.

PC1 includes policies to achieve the CWO's, including a 40% reduction in copper and zinc baseline loads to Pauatahanui Inlet and Onepoto Arm.³ It is assumed that this would be largely delivered by the improvements within each contributing FMU needed to meet the part-FMU TAS. In other words, by achieving the load reductions necessary to achieve part-FMU TAS, the load reduction necessary to align with the Te Awarua o Porirua CMU policies will also likely be achieved. There is also scope for load reductions by treatment of stormwater discharges that go directly to the CMU's.

For the other CMUs PC1 does not set specific contaminant load reductions for copper or zinc. The policy requirement in these instances is to reduce copper and zinc loads to contribute to meeting the coastal water objectives to maintain or improve.⁴

Best regards,

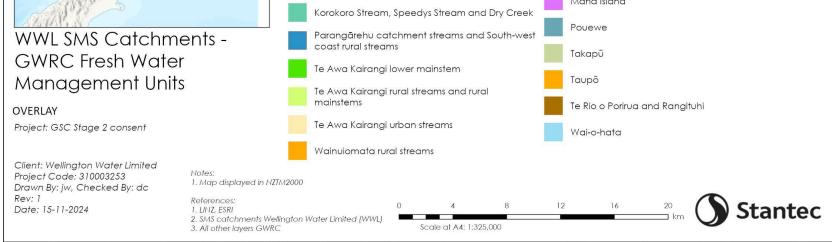
Stantec New Zealand

David Cameron Senior Principal Environmental Scientist Phone: +64 4 381 6707 Mobile: +64 27 271 0142 david.cameron2@stantec.com

³ Policy P.P4 sets contaminant load reductions for the Plan. Policy P.P12 then provides more specific direction for stormwater discharges from local authority networks (15% for copper and 40% for zinc) to contribute towards meeting the target attribute states and coastal water objectives for copper and zinc in the Onepoto Arm and Pāuatahanui Inlet.

⁴ See for example Policy WH.P13(a).

ZEALAND


Raumati South Hutt Hutt Akatarawa Headwater orirua Hutt Horokiri Whakatiki itt Nort Pauatahanul Huft Upper Hutt South Pakuratah Hutt Hulls Greek Porirua Hutt Mangaroa North Sid ower South Waiwhetu Lake Wainuiomata larbour / Wairarapa Wainulomata Ngaurang Iti Wainuiomata Morton Kaiwharawhara Black Creek ellington (Eastbourne Karori Lake Orongorongo nangatera Wainulomata Pirinoa Whāngaimoana Legend SMS catchment Wainuiomata urban streams Target attribute state site Waiwhetu Stream \bigcirc River Wellington urban Freshwater management units - Te Whanganui-a-Tara Õrongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mainstems Islands NEW

Attachment A: Part-FMUs and stormwater sub-catchments

Freshwater management units - Te Awarua-o-Porirua Mana Island

Korokoro Stream, Speedys Stream and Dry Creek

Kaiwharawhara Stream

This document has been prepared based on information provided by others as cited in the data sources. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be in a result. Stantec assumes no responsibility for data supplied in electronic format, and the recipient accepts full responsibility for verifying the accuracy and completeness of the data.

Attachment B: Alignment of Whaitua, CMU's, Part-FMU's, Sub-catchments, and TAS sites

Whaitua	СМИ	Part_FMU	Sub-catchment	%FMU present in each sub- catchment	TAS_site
TAoP	Onepoto Arm	Te Rio o Porirua and Rangituhi	Porirua	80.9	Porirua Stream at Milk Depot
TAoP	Pauatahanui Inlet	Pouewe	Horokiri	98.8	Horokiri Stream at Snodgrass
TAoP	Pauatahanui Inlet	Pouewe	Kakaho	83.7	Horokiri Stream at Snodgrass
TAoP	Pauatahanui Inlet	Takapu	Pauatahanui	98.5	Pauatahanui Stream at Elmwood
TAoP	Pauatahanui Inlet	Wai-o-hata	Duck	80.8	Duck Creek at Trade Winds Drive
TAoP	Poririua Open Coast	Taupo	Taupo	97.8	Taupo at Plimmerton Domain
TAoP	Poririua Open Coast	Te Rio o Porirua and Rangituhi	Porirua Coast	50.3	Porirua Stream at Milk Depot
TWT	Te Whanganui-a-Tara harbour and estuari	Kaiwharawhara Stream	Kaiwharawhara	97.2	Kaiwharawhara Stream at Ngaio Gorg
TWT	Te Whanganui-a-Tara harbour and estuari	Korokoro Stream, Speedys Stream and Dry Creek	Hutt Speedys	98.7	Kororkoro Stream at Cornish Street
TWT	Te Whanganui-a-Tara harbour and estuari	Korokoro Stream, Speedys Stream and Dry Creek	Korokoro	95.7	Kororkoro Stream at Cornish Street
TWT	Te Whanganui-a-Tara harbour and estuari	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forest	Hutt Akatarawa	98.0	Whakatiki River at Riverstone
TWT	Te Whanganui-a-Tara harbour and estuari	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forest	Hutt Headwater	94.1	Whakatiki River at Riverstone
TWT	Te Whanganui-a-Tara harbour and estuari	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forest	Hutt Pakuratahi	70.8	Whakatiki River at Riverstone
TWT	Te Whanganui-a-Tara harbour and estuari	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forest	Hutt Whakatiki	99.6	Whakatiki River at Riverstone
TWT	Te Whanganui-a-Tara harbour and estuari	Te Awa Kairangi lower mainstem	Lower Hutt North	1.8	Hutt River at Boulcott
TWT	Te Whanganui-a-Tara harbour and estuari	Te Awa Kairangi lower mainstem	Lower Hutt South	2.7	Hutt River at Boulcott
TWT	Te Whanganui-a-Tara harbour and estuari	Te Awa Kairangi rural streams and rural mainstems	Hutt Mangaroa	50.7	Mangaroa River at Te Marua
TWT	Te Whanganui-a-Tara harbour and estuari	Te Awa Kairangi urban streams	Hutt Hulls Creek	99.8	Hulls Creek at Reynolds Bach Drive
TWT	Te Whanganui-a-Tara harbour and estuari	Te Awa Kairangi urban streams	Lower Hutt South	87.3	Hulls Creek at Reynolds Bach Drive
TWT	Te Whanganui-a-Tara harbour and estuari	Te Awa Kairangi urban streams	Stokes Valley	98.8	Hulls Creek at Reynolds Bach Drive
TWT	Te Whanganui-a-Tara harbour and estuari	Te Awa Kairangi urban streams	Upper Hutt North	94.8	Hulls Creek at Reynolds Bach Drive
TWT	Te Whanganui-a-Tara harbour and estuari	Te Awa Kairangi urban streams	Upper Hutt South	94.1	Hulls Creek at Reynolds Bach Drive
TWT	Te Whanganui-a-Tara harbour and estuari	Waiwhetu Stream	Waiwhetu	90.2	Waiwhetu Stream at Whites Line East
TWT	Te Whanganui-a-Tara harbour and estuari	Wellington urban	East Coast	98.1	Karori Stream at Makara Peak MBP
TWT	Te Whanganui-a-Tara harbour and estuari	Wellington urban	Eastbourne	69.2	Karori Stream at Makara Peak MBP
TWT	Te Whanganui-a-Tara harbour and estuari	Wellington urban	Evans Bay	99.5	Karori Stream at Makara Peak MBP
TWT	Te Whanganui-a-Tara harbour and estuari	Wellington urban	Island Bay / Houghton Bay	99.8	Karori Stream at Makara Peak MBP
TWT	Te Whanganui-a-Tara harbour and estuari	Wellington urban	Lambton / Northern CBD	98.2	Karori Stream at Makara Peak MBP
TWT	Te Whanganui-a-Tara harbour and estuari		North Harbour / Ngauranga	98.3	Karori Stream at Makara Peak MBP
TWT	Wai Tai	Wellington urban	Karori	98.5	Karori Stream at Makara Peak MBP
TWT	Wai Tai	Wellington urban	Lyall Bay	98.9	Karori Stream at Makara Peak MBP
TWT	Wai Tai	Wellington urban	Owhiro Bay	99.1	Karori Stream at Makara Peak MBP
TWT	Wainuiomata Estuary		Wainuiomata Morton	84.0	Whakatiki River at Riverstone
TWT	Wainuiomata Estuary	Wainuiomata rural streams	Wainuiomata	69.6	Wainuiomata River DS White Bridge
TWT	Wainuiomata Estuary	Wainuiomata rural streams	Wainuiomata Iti	98.3	Wainuiomata River DS White Bridge
TWT	Wainuiomata Estuary	Wainuiomata urban streams	Wainuiomata Black Creek	71.8	Black Creek

Attachment C: Sub-catchments, current state, TAS, and required load reductions

			%FMU present in each sub-					Required load
TAoP	Part_FMU Pouewe	Sub-catchment Horokiri	catchment 98.8	TAS_site Horokiri Stream at Snodgrass	Attribute Copper	Current State A	A A	reduction 0%
TAoP TAoP	Pouewe Pouewe	Horokiri Horokiri		Horokiri Stream at Snodgrass Horokiri Stream at Snodgrass	Zinc E. coli	A	AB	0% 67%
TAoP	Pouewe	Kakaho	83.7	Horokiri Stream at Snodgrass	Copper	А	А	0%
TAoP TAoP	Pouewe Pouewe	Kakaho Kakaho		-	Zinc E. coli	A	AB	0% 99%
TAoP	Такари	Pauatahanui	98.5	Pauatahanui Stream at Elmwood	Copper	A	А	0%
TAoP TAoP	Takapu Takapu	Pauatahanui Pauatahanui			Zinc E. coli	A	AB	0% 96%
TAoP	Таиро	Таиро	97.8	Taupo at Plimmerton Domain	Copper	D	В	78%
TAoP TAoP	Таиро Таиро	Таиро Таиро		Taupo at Plimmerton Domain Taupo at Plimmerton Domain	Zinc E. coli	C E	AB	56% 99%
TAoP	Te Rio o Porirua and Rangituhi	Porirua	80.9	Porirua Stream at Milk Depot	Copper	с	С	0%
TAoP TAoP	Te Rio o Porirua and Rangituhi Te Rio o Porirua and Rangituhi	Porirua Porirua			Zinc E. coli	D	C C	0% 92%
TAoP	Te Rio o Porirua and Rangituhi	Porirua Coast	50.3	Porirua Stream at Milk Depot	Copper	с	С	0%
TAoP TAoP	Te Rio o Porirua and Rangituhi Te Rio o Porirua and Rangituhi	Porirua Coast Porirua Coast			Zinc E. coli	D	C C	0% 92%
TAoP	Wai-o-hata	Duck	80.8	Duck Creek at Trade Winds Drive	Copper	с	А	99%
TAoP TAoP	Wai-o-hata Wai-o-hata	Duck Duck			Zinc E. coli	B	A C	56% 83%
TWT	Kaiwharawhara Stream	Kaiwharawhara	97.2	Kaiwharawhara Stream at Ngaio G		C	В	53%
TWT TWT	Kaiwharawhara Stream Kaiwharawhara Stream	Kaiwharawhara Kaiwharawhara		Kaiwharawhara Stream at Ngaio G Kaiwharawhara Stream at Ngaio G		B	A	76% 89%
TWT	Korokoro Stream, Speedys Stream and Dry Creek	Korokoro	95.7	Kororkoro Stream at Cornish Stree		A	A	0%
TWT TWT	Korokoro Stream, Speedys Stream and Dry Creek Korokoro Stream, Speedys Stream and Dry Creek	Korokoro Korokoro		Kororkoro Stream at Cornish Stree Kororkoro Stream at Cornish Stree		AB	AB	0% insufficient data
TWT	Korokoro Stream, Speedys Stream and Dry Creek Korokoro Stream, Speedys Stream and Dry Creek	Hutt Speedys	98.7	Kororkoro Stream at Cornish Stree		A	A	0%
TWT TWT	Korokoro Stream, Speedys Stream and Dry Creek	Hutt Speedys Hutt Speedys		Kororkoro Stream at Cornish Stree Kororkoro Stream at Cornish Stree		AB	AB	0%
TWT	Korokoro Stream, Speedys Stream and Dry Creek Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai H		98.0	Whakatiki River at Riverstone	Copper	?	A	insufficient data 0%
TWT TWT	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai h Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai h				Zinc E. coli	?	A	0%
TWT	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai h		94.1	Whakatiki River at Riverstone Whakatiki River at Riverstone	E. coli Copper	A ?	A A	0% 0%
TWT	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai H Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai h				Zinc	?	A	0%
TWT TWT	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai l		70.8	Whakatiki River at Riverstone Whakatiki River at Riverstone	E. coli Copper	A ?	A A	0% 0%
TWT	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai H				Zinc	?	А	0%
TWT TWT	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai f		99.6	Whakatiki River at Riverstone Whakatiki River at Riverstone	E. coli Copper	A ?	A	0% 0%
TWT	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai H				Zinc	?	А	0%
TWT TWT	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai V		84.0	Whakatiki River at Riverstone Whakatiki River at Riverstone	E. coli Copper	A ?	A	0% 0%
TWT	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai V				Zinc	?	А	0%
TWT TWT	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai Te Awa Kairangi lower mainstem	Wainuiomata Morton Lower Hutt North	1.8	Whakatiki River at Riverstone Hutt River at Boulcott	E. coli Copper	A	A	0% 0%
TWT	Te Awa Kairangi lower mainstem	Lower Hutt North			Zinc	A	А	0%
TWT TWT	Te Awa Kairangi lower mainstem Te Awa Kairangi lower mainstem	Lower Hutt North Lower Hutt South		Hutt River at Boulcott Hutt River at Boulcott	E.coli Copper	D A	C A	17% 0%
TWT	Te Awa Kairangi lower mainstem	Lower Hutt South		Hutt River at Boulcott	Zinc	A	A	0%
TWT TWT	Te Awa Kairangi lower mainstem Te Awa Kairangi rural streams and rural mainstems	Lower Hutt South Hutt Mangaroa	50.7	Hutt River at Boulcott Mangaroa River at Te Marua	E.coli Copper	D ?	C A	17% 0%
TWT	Te Awa Kairangi rural streams and rural mainstems	Hutt Mangaroa	50.7		Zinc	?	A	0%
TWT TWT	Te Awa Kairangi rural streams and rural mainstems Te Awa Kairangi urban streams	Hutt Mangaroa Hutt Hulls Creek	99.8	Mangaroa River at Te Marua Hulls Creek at Reynolds Bach Drive	E. coli Conner	D C	B	61% 69%
TWT	Te Awa Kairangi urban streams	Hutt Hulls Creek	55.0	Hulls Creek at Reynolds Bach Drive		c	В	40%
TWT TWT	Te Awa Kairangi urban streams Te Awa Kairangi urban streams	Hutt Hulls Creek Lower Hutt North	68.6	Hulls Creek at Reynolds Bach Drive Hulls Creek at Reynolds Bach Drive		E C	C B	91% 69%
TWT	Te Awa Kairangi urban streams	Lower Hutt North	00.0	Hulls Creek at Reynolds Bach Drive	Zinc	c	В	40%
TWT TWT	Te Awa Kairangi urban streams Te Awa Kairangi urban streams	Lower Hutt North Lower Hutt South	87.3	Hulls Creek at Reynolds Bach Drive Hulls Creek at Reynolds Bach Drive		E C	C B	91 69%
TWT	Te Awa Kairangi urban streams	Lower Hutt South	87.5	Hulls Creek at Reynolds Bach Drive		c	В	40%
TWT TWT	Te Awa Kairangi urban streams Te Awa Kairangi urban streams	Lower Hutt South Stokes Valley	98.8	Hulls Creek at Reynolds Bach Drive Hulls Creek at Reynolds Bach Drive		E C	C B	91 69%
TWT	Te Awa Kairangi urban streams	Stokes Valley	96.6	Hulls Creek at Reynolds Bach Drive		c	В	40%
TWT TWT	Te Awa Kairangi urban streams Te Awa Kairangi urban streams	Stokes Valley Upper Hutt North	94.8	Hulls Creek at Reynolds Bach Drive		E	С	91%
TWT	Te Awa Kairangi urban streams	Upper Hutt North	94.8	Hulls Creek at Reynolds Bach Drive Hulls Creek at Reynolds Bach Drive		C C	B B	69% 40%
TWT	Te Awa Kairangi urban streams	Upper Hutt North		Hulls Creek at Reynolds Bach Drive		E	С	91%
TWT TWT	Te Awa Kairangi urban streams Te Awa Kairangi urban streams	Upper Hutt South Upper Hutt South	94.1	Hulls Creek at Reynolds Bach Drive Hulls Creek at Reynolds Bach Drive		C C	B B	69% 40%
TWT	Te Awa Kairangi urban streams	Upper Hutt South		Hulls Creek at Reynolds Bach Drive		E	С	91%
TWT TWT	Wainuiomata rural streams Wainuiomata rural streams	Wainuiomata Wainuiomata	69.6	Wainuiomata River DS White Bridg Wainuiomata River DS White Bridg		? ?	A A	0% 0%
	Wainuiomata rural streams	Wainuiomata		Wainuiomata River DS White Bridg		В	A	18%
TWT TWT	Wainuiomata rural streams Wainuiomata rural streams	Wainuiomata Iti Wainuiomata Iti	98.3	Wainuiomata River DS White Bridg Wainuiomata River DS White Bridg		? ?	A A	0% 0%
TWT	Wainulomata rural streams	Wainuiomata Iti Wainuiomata Black Crook	-	Wainuiomata River DS White Bridg		В	А	18%
TWT TWT	Wainuiomata urban streams Wainuiomata urban streams	Wainuiomata Black Creek Wainuiomata Black Creek	71.8	Black Creek Black Creek	Copper Zinc	C D	C C	0% 8%
TWT	Wainuiomata urban streams	Wainuiomata Black Creek		Black Creek	E. coli	Е	С	91%
TWT TWT	Waiwhetu Stream Waiwhetu Stream	Waiwhetu Waiwhetu	90.2	Waiwhetu Stream at Whites Line Ea Waiwhetu Stream at Whites Line E		C D	A B	80% 76%
TWT	Waiwhetu Stream	Waiwhetu		Waiwhetu Stream at Whites Line E	aE. coli	Е	С	90%
TWT TWT	Wellington urban Wellington urban	Karori Karori	98.5	Karori Stream at Makara Peak MBP Karori Stream at Makara Peak MBP		D D	C C	4% 8%
TWT	Wellington urban	Karori		Karori Stream at Makara Peak MBP	E. coli	Е	С	96%
TWT TWT	Wellington urban Wellington urban	East Coast East Coast	98.1	Karori Stream at Makara Peak MBP Karori Stream at Makara Peak MBP	•	D D	C C	4% 8%
TWT	Wellington urban	East Coast		Karori Stream at Makara Peak MBF	E. coli	Е	С	96%
TWT TWT	Wellington urban Wellington urban	Eastbourne Eastbourne	69.2	Karori Stream at Makara Peak MBP Karori Stream at Makara Peak MBP		D D	C C	4% 8%
TWT	Wellington urban	Eastbourne		Karori Stream at Makara Peak MBP	E. coli	Е	С	96%
TWT TWT	Wellington urban Wellington urban	Evans Bay Evans Bay	99.5	Karori Stream at Makara Peak MBP Karori Stream at Makara Peak MBP		D D	C C	4% 8%
TWT	Wellington urban	Evans Bay		Karori Stream at Makara Peak MBP	E. coli	E	С	96%
TWT TWT	Wellington urban Wellington urban	Island Bay / Houghton Bay Island Bay / Houghton Bay	99.8	Karori Stream at Makara Peak MBP Karori Stream at Makara Peak MBP		D D	C C	4% 8%
TWT	Wellington urban	Island Bay / Houghton Bay		Karori Stream at Makara Peak MBF	E. coli	Е	С	96%
TWT TWT	Wellington urban Wellington urban	Lambton / Northern CBD Lambton / Northern CBD	98.2	Karori Stream at Makara Peak MBP Karori Stream at Makara Peak MBP		D D	C C	4% 8%
TWT	Wellington urban	Lambton / Northern CBD		Karori Stream at Makara Peak MBF	E. coli	Е	с	96%
	Wellington urban Wellington urban	Lyall Bay Lyall Bay	98.9	Karori Stream at Makara Peak MBP Karori Stream at Makara Peak MBP		D D	C C	4% 8%
TWT	Wellington urban	Lyall Bay Lyall Bay		Karori Stream at Makara Peak MBP	E. coli	E	c	8% 96%
TWT TWT	Wellington urban Wellington urban	North Harbour / Ngaurang North Harbour / Ngauranga	98.3	Karori Stream at Makara Peak MBP Karori Stream at Makara Peak MBP		D D	C C	4% 8%
1 1 1 1	Wellington urban	North Harbour / Ngauranga North Harbour / Ngauranga		Karori Stream at Makara Peak MBF		E	C C	8% 96%
TWT								
TWT TWT TWT	Wellington urban Wellington urban	Owhiro Bay Owhiro Bay	99.1	Karori Stream at Makara Peak MBP Karori Stream at Makara Peak MBP		D D	C C	4% 8%

Memo

Attachment D: Required load reductions for copper

W/baitua	Sub-catchment	Part FMU	TAS_site	Attribute	Current	TAS	Required load reduction
TAoP	Duck	Wai-o-hata	Duck Creek at Trade Winds Drive	Copper	C	A	99%
TWT	Waiwhetu	Waiwhetu Stream	Waiwhetu Stream at Whites Line East	Copper	C C	A	80%
TAoP	Taupo	Taupo	Taupo at Plimmerton Domain	Copper	D	В	78%
TWT		Te Awa Kairangi urban streams	Hulls Creek at Reynolds Bach Drive	Copper	C	B	69%
TWT	Lower Hutt North	Te Awa Kairangi urban streams	Hulls Creek at Reynolds Bach Drive	Copper	C	B	69%
TWT	Lower Hutt South	Te Awa Kairangi urban streams	Hulls Creek at Reynolds Bach Drive	Copper	C	B	69%
TWT	Stokes Valley	Te Awa Kairangi urban streams	Hulls Creek at Reynolds Bach Drive	Copper	C	В	69%
TWT	Upper Hutt North	Te Awa Kairangi urban streams	Hulls Creek at Reynolds Bach Drive	Copper	C	В	69%
TWT	Upper Hutt South	Te Awa Kairangi urban streams	Hulls Creek at Reynolds Bach Drive	Copper	C	B	69%
TWT	Kaiwharawhara	Kaiwharawhara Stream	Kaiwharawhara Stream at Ngaio Gorg	Copper	C	B	53%
TWT		Wellington urban	Karori Stream at Makara Peak MBP	Copper	D	С	4%
TWT		Wellington urban	Karori Stream at Makara Peak MBP	Copper	D	C	4%
TWT		Wellington urban	Karori Stream at Makara Peak MBP	Copper	D	C	4%
TWT	Island Bay / Houghton Bay		Karori Stream at Makara Peak MBP	Copper	D	C	4%
TWT	1. 0 1	Wellington urban	Karori Stream at Makara Peak MBP	Copper	D	C	4%
TWT		Wellington urban	Karori Stream at Makara Peak MBP	Copper	D	C	4%
TWT	,	Wellington urban	Karori Stream at Makara Peak MBP	Copper	D	C	4%
TWT	North Harbour / Ngaurang		Karori Stream at Makara Peak MBP	Copper	D	С	4%
TWT		Wellington urban	Karori Stream at Makara Peak MBP	Copper	D	С	4%
TAoP	Horokiri	Pouewe	Horokiri Stream at Snodgrass	Copper	A	Α	0%
TWT	Hutt Akatarawa	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mainstem	Whakatiki River at Riverstone	Copper	?	Α	0%
TWT	Hutt Headwater	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mainstem	Whakatiki River at Riverstone	Copper	?	Α	0%
TWT	Hutt Mangaroa	Te Awa Kairangi rural streams and rural mainstems	Mangaroa River at Te Marua	Copper	?	Α	0%
TWT	Hutt Pakuratahi	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mainstem	Whakatiki River at Riverstone	Copper	?	Α	0%
TWT	Hutt Speedys	Korokoro Stream, Speedys Stream and Dry Creek	Kororkoro Stream at Cornish Street	Copper	Α	Α	0%
TWT	Hutt Whakatiki	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mainstem	Whakatiki River at Riverstone	Copper	?	A	0%
TAoP	Kakaho	Pouewe	Horokiri Stream at Snodgrass	Copper	Α	А	0%
TWT	Korokoro	Korokoro Stream, Speedys Stream and Dry Creek	Kororkoro Stream at Cornish Street	Copper	A	А	0%
TWT	Lower Hutt North	Te Awa Kairangi lower mainstem	Hutt River at Boulcott	Copper	A	А	0%
TWT	Lower Hutt South	Te Awa Kairangi lower mainstem	Hutt River at Boulcott	Copper	A	А	0%
TAoP	Pauatahanui	Takapu	Pauatahanui Stream at Elmwood	Copper	A	А	0%
TAoP	Porirua	Te Rio o Porirua and Rangituhi	Porirua Stream at Milk Depot	Copper	С	С	0%
TAoP	Porirua Coast	Te Rio o Porirua and Rangituhi	Porirua Stream at Milk Depot	Copper	С	С	0%
TWT	Wainuiomata	Wainuiomata rural streams	Wainuiomata River DS White Bridge	Copper	?	A	0%
TWT	Wainuiomata Black Creek	Wainuiomata urban streams	Black Creek	Copper	С	С	0%
TWT	Wainuiomata Iti	Wainuiomata rural streams	Wainuiomata River DS White Bridge	Copper	?	А	0%
TWT	Wainuiomata Morton	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mainstem	Whakatiki River at Riverstone	Copper	?	А	0%

Attachment E: Required load reductions for zinc

Row	Whaitua	Sub-catchment	Part FMU	TAS site	Attribute	Current	TAS	Required load reduction
41	TWT	Kaiwharawhara	Kaiwharawhara Stream	Kaiwharawhara Stream at Ngaio Gorge	Zinc	B	A	76%
110	TWT	Waiwhetu	Waiwhata whata Stream	Waiwhetu Stream at Whites Line East	Zinc	D	B	76%
2	TAoP	Duck	Walvieu Stream Wai-o-hata	Duck Creek at Trade Winds Drive	Zinc	B	A	56%
89	TAOP	Taupo	Taupo	Taupo at Plimmerton Domain	Zinc	C	A	56%
23	TWT	Hutt Hulls Creek	Te Awa Kairangi urban streams	Hulls Creek at Reynolds Bach Drive	Zinc	C	B	40%
23 59	TWT	Lower Hutt North	Te Awa Kairangi urban streams	Hulls Creek at Reynolds Bach Drive	Zinc	C	B	40%
65	TWT	Lower Hutt South	Te Awa Kairangi urban streams	Hulls Creek at Reynolds Bach Drive	Zinc	C	B	40%
86		Stokes Valley		Hulls Creek at Reynolds Bach Drive	Zinc	C	B	40%
		Upper Hutt North	Te Awa Kairangi urban streams	Hulls Creek at Reynolds Bach Drive	Zinc	C C	B	40%
92	TWT		Te Awa Kairangi urban streams	,		-	B	
95	TWT	Upper Hutt South	Te Awa Kairangi urban streams	Hulls Creek at Reynolds Bach Drive	Zinc	С	U	40% 8%
5	TWT	East Coast	Wellington urban	Karori Stream at Makara Peak MBP	Zinc	D	С	
8	TWT	Eastbourne	Wellington urban	Karori Stream at Makara Peak MBP	Zinc	D	С	8%
11	TWT	Evans Bay	Wellington urban	Karori Stream at Makara Peak MBP	Zinc	D	С	8%
38	TWT	Island Bay / Houghton Bay	Wellington urban	Karori Stream at Makara Peak MBP	Zinc	D	С	8%
47	TWT	Karori	Wellington urban	Karori Stream at Makara Peak MBP	Zinc	D	С	8%
53	TWT	Lambton / Northern CBD	Wellington urban	Karori Stream at Makara Peak MBP	Zinc	D	С	8%
68	TWT	Lyall Bay	Wellington urban	Karori Stream at Makara Peak MBP	Zinc	D	С	8%
71			Wellington urban	Karori Stream at Makara Peak MBP	Zinc	D	С	8%
74	TWT	Owhiro Bay	Wellington urban	Karori Stream at Makara Peak MBP	Zinc	D	С	8%
101	TWT		Wainuiomata urban streams	Black Creek	Zinc	D	С	8%
80	TAoP	Porirua	Te Rio o Porirua and Rangituhi	Porirua Stream at Milk Depot	Zinc	D	С	8%
83	TAoP	Porirua Coast	Te Rio o Porirua and Rangituhi	Porirua Stream at Milk Depot	Zinc	D	С	8%
14	TAoP	Horokiri	Pouewe	Horokiri Stream at Snodgrass	Zinc	Α	А	0%
17	TWT	Hutt Akatarawa	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai	Whakatiki River at Riverstone	Zinc	?	А	0%
20	TWT	Hutt Headwater	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai	Whakatiki River at Riverstone	Zinc	?	А	0%
26		Hutt Mangaroa	Te Awa Kairangi rural streams and rural mainstems	Mangaroa River at Te Marua	Zinc	?	А	0%
29	TWT	Hutt Pakuratahi	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai	Whakatiki River at Riverstone	Zinc	?	А	0%
32	TWT	Hutt Speedys	Korokoro Stream, Speedys Stream and Dry Creek	Kororkoro Stream at Cornish Street	Zinc	А	А	0%
35	TWT	Hutt Whakatiki	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai	Whakatiki River at Riverstone	Zinc	?	А	0%
44	TAoP	Kakaho	Pouewe	Horokiri Stream at Snodgrass	Zinc	А	А	0%
50	TWT	Korokoro	Korokoro Stream, Speedys Stream and Dry Creek	Kororkoro Stream at Cornish Street	Zinc	А	А	0%
56	TWT	Lower Hutt North	Te Awa Kairangi lower mainstem	Hutt River at Boulcott	Zinc	A	А	0%
62	TWT	Lower Hutt South	Te Awa Kairangi lower mainstem	Hutt River at Boulcott	Zinc	Α	А	0%
77	TAoP	Pauatahanui	Takapu	Pauatahanui Stream at Elmwood	Zinc	А	А	0%
98	TWT	Wainuiomata	Wainuiomata rural streams	Wainuiomata River DS White Bridge	Zinc	?	А	0%
104	TWT	Wainuiomata Iti	Wainuiomata rural streams	Wainuiomata River DS White Bridge	Zinc	?	А	0%
107	TWT	Wainuiomata Morton	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mai	Whakatiki River at Riverstone	Zinc	?	А	0%

5 December 2024 Tim Blackman Page 9 of 9

Reference: Allocating TAS sites to SW sub-catchments

Row	Whaitua	Sub-catchment	Part FMU	TAS site	Attribute	Current State	TAS	Required load reduction
45		Kakaho	Pouewe	Horokiri Stream at Snodgrass	E. coli	E	B	99%
90	TAoP	Таиро	Taupo	Taupo at Plimmerton Domain	E. coli	E	B	99%
6	TWT	East Coast	Wellington urban	Karori Stream at Makara Peak MBP	E. coli	E	С	96%
9	TWT	Eastbourne	Wellington urban	Karori Stream at Makara Peak MBP	E. coli	E	C	96%
12	TWT	Evans Bay	Wellington urban	Karori Stream at Makara Peak MBP	E. coli	E	С	96%
39	TWT	, Island Bay / Houghton Bay	-	Karori Stream at Makara Peak MBP	E. coli	E	С	96%
48	TWT	Karori	Wellington urban	Karori Stream at Makara Peak MBP	E. coli	E	С	96%
54	TWT	Lambton / Northern CBD	Wellington urban	Karori Stream at Makara Peak MBP	E. coli	E	С	96%
69		Lyall Bay	Wellington urban	Karori Stream at Makara Peak MBP	E. coli	E	С	96%
72	TWT	North Harbour / Ngauranga	Wellington urban	Karori Stream at Makara Peak MBP	E. coli	E	С	96%
75	TWT	Owhiro Bay	Wellington urban	Karori Stream at Makara Peak MBP	E. coli	E	С	96%
78	TAoP	Pauatahanui	Takapu	Pauatahanui Stream at Elmwood	E. coli	E	С	96%
81	TAoP	Porirua	Te Rio o Porirua and Rangituhi	Porirua Stream at Milk Depot	E. coli	E	С	92%
84	TAoP	Porirua Coast	Te Rio o Porirua and Rangituhi	Porirua Stream at Milk Depot	E. coli	E	С	92%
60	TWT	Lower Hutt North	Te Awa Kairangi urban streams	Hulls Creek at Reynolds Bach Drive	E. coli	E	С	91%
66	TWT	Lower Hutt South	Te Awa Kairangi urban streams	Hulls Creek at Reynolds Bach Drive	E. coli	E	С	91%
24	TWT	Hutt Hulls Creek	Te Awa Kairangi urban streams	Hulls Creek at Reynolds Bach Drive	E. coli	E	С	91%
87	TWT	Stokes Valley	Te Awa Kairangi urban streams	Hulls Creek at Reynolds Bach Drive	E. coli	E	С	91%
93	TWT	Upper Hutt North	Te Awa Kairangi urban streams	Hulls Creek at Reynolds Bach Drive	E. coli	E	С	91%
96	TWT	Upper Hutt South	Te Awa Kairangi urban streams	Hulls Creek at Reynolds Bach Drive	E. coli	E	С	91%
102	TWT	Wainuiomata Black Creek	Wainuiomata urban streams	Black Creek	E. coli	E	С	91%
111	TWT	Waiwhetu	Waiwhetu Stream	Waiwhetu Stream at Whites Line East	E. coli	E	С	90%
42	TWT	Kaiwharawhara	Kaiwharawhara Stream	Kaiwharawhara Stream at Ngaio Gorg	E. coli	E	С	89%
3	TAoP	Duck	Wai-o-hata	Duck Creek at Trade Winds Drive	E. coli	E	С	83%
15	TAoP	Horokiri	Pouewe	Horokiri Stream at Snodgrass	E. coli	E	В	67%
27	TWT	Hutt Mangaroa	Te Awa Kairangi rural streams and rural mainstems	Mangaroa River at Te Marua	E. coli	D	В	61%
99	TWT	Wainuiomata	Wainuiomata rural streams	Wainuiomata River DS White Bridge	E. coli	В	Α	18%
105	TWT	Wainuiomata Iti	Wainuiomata rural streams	Wainuiomata River DS White Bridge	E. coli	В	Α	18%
57	TWT	Lower Hutt North	Te Awa Kairangi lower mainstem	Hutt River at Boulcott	E.coli	D	С	17%
63	TWT	Lower Hutt South	Te Awa Kairangi lower mainstem	Hutt River at Boulcott	E.coli	D	С	17%
18	TWT	Hutt Akatarawa	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mains	Whakatiki River at Riverstone	E. coli	А	Α	0%
21	TWT	Hutt Headwater	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mains	Whakatiki River at Riverstone	E. coli	А	А	0%
30	TWT	Hutt Pakuratahi	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mains	Whakatiki River at Riverstone	E. coli	А	А	0%
36	TWT	Hutt Whakatiki	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mains	Whakatiki River at Riverstone	E. coli	А	А	0%
108	TWT	Wainuiomata Morton	Orongorongo, Te Awa Kairangi and Wainuiomata small forested and Te Awa Kairangi forested mains	Whakatiki River at Riverstone	E. coli	А	А	0%
33	TWT	Hutt Speedys	Korokoro Stream, Speedys Stream and Dry Creek	Kororkoro Stream at Cornish Street	E. coli	В	В	insuffient data
51	TWT	Korokoro	Korokoro Stream, Speedys Stream and Dry Creek	Kororkoro Stream at Cornish Street	E. coli	В	В	insuffient data

Attachment F: Required load reduction for *E. coli*